浙江省五校2014届高三第一次联考理科数学试题试卷

网址:www.gaokw.com 时间:2013-12-19 整理:一品高考网
2013学年浙江省第一次五校联考
数学(理科)试题
  
本试题卷分选择题和非选择题两部分。满分150分, 考试时间120分钟。

选择题部分(共50分)
  参考公式:
  如果事件A, B互斥, 那么 棱柱的体积公式
  P(A+B)=P(A)+ P(B) V=Sh
  如果事件A, B相互独立, 那么 其中S表示棱柱的底面积, h表示棱柱的高
  P(A·B)=P(A)· P(B) 棱锥的体积公式
  如果事件A在一次试验中发生的概率是p, 那么n V=Sh
  次独立重复试验中事件A恰好发生k次的概率 其中S表示棱锥的底面积, h表示棱锥的高
  Pn(k)=Cpk (1-p)n-k (k = 0,1,2,…, n) 球的表面积公式
  棱台的体积公式 S = 4πR2
   球的体积公式
  其中S1, S2分别表示棱台的上、下底面积,  V=πR3
  h表示棱台的高                                    其中R表示球的半径

一、选择题: 本大题共10小题, 每小题5分,共50分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
1. 已知集合则为(   )
    A.       B.        C.         D.
2. “”是“对任意实数,成立”的(    ) 
    A.充要条件    B.必要不充分条件    C.充分不必要条件    D.既不充分也不必要条件
3. 函数y=的图象的一条对称轴为(     )  
     A.          B.          C.         D.
4. 在ΔABC中,角A,B,C的对边分别为a,b,c,且, 则ΔABC的形状是(    )
A.正三角形      B.直角三角形      C.等腰三角形      D.等腰直角三角形
5.设等差数列的前项和为,若,且,则(    )
      A.               B.                C.              D.
6. 用0,1,2,3,4这五个数字组成无重复数字的五位数,并且两个奇数数字之间恰有一个偶数数字,这样的五位数有(    ) 
      A.12个               B.28个             C.36个             D.48个

7. 已知,满足,且的取值范围是,则(  )
       A.1            B.2            C.-1           D.学科-2网
8. 已知是单位圆上的两点,为圆心,且,是圆的一条直径,点在圆内,且满足,则的取值范围是(   )
       A.         B.          C.        D.
9.已知函数的两个极值点分别为,且,点表示的平面区域内存在点满足,则实数的取值范围是(  )
    A.      B.     C.   D.
10. 对任意实数,,不等式恒成立,则实数的最大值为(   )
      A.             B.            C.          D.
非选择题部分 (共100分)
二、 填空题: 本大题共7小题, 每小题4分, 共28分。
11.若复数为虚数单位)为纯虚数,
则的值为___▲____ 
12.执行右图程序,其结果是____▲____
13. 若对任意的实数,有

则的值为____▲____
14.在等比数列中,若,,则▲
15. 已知,,,, 若
,则的最大值是   ▲  
16. 设平面点集 其中, 则所表示的平面图形的面积为____▲____
17. 若实数满足,则的取值范围是____▲____

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分14分)
  已知函数,其中,的最小正周期为.
   (Ⅰ)求函数的单调递增区间;
   (Ⅱ)在中, 角的对边分别是、、,且满足,求函数的取值范围.
19.(本小题满分14分)
    设向量 函数. 
   (Ⅰ)若不等式的解集为,求不等式的解集;
   (Ⅱ)若函数在区间上有两个不同的零点, 求实数的取值范围.
20.(本小题满分14分)
  甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空. 比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止. 设在每局中参赛者胜负的概率均为, 且各局胜负相互独立.  求:
  (Ⅰ)打满4局比赛还未停止的概率;
    (Ⅱ)比赛停止时已打局数的分布列与期望.
21.(本小题满分14分)
  正项数列中,,其前项和满足:.
   (Ⅰ)求与;
   (Ⅱ)令, 数列{}的前项和为. 证明: 对于任意的,都有.
22.(本小题满分16分)
    对于定义在上的函数,若存在,对任意的,都有或者,则称为函数在区间上的“下确界”或“上确界”.
  (Ⅰ)求函数在上的“下确界”;
  (Ⅱ)若把“上确界”减去“下确界”的差称为函数在上的“极差”, 试求函数在上的“极差”;
  (Ⅲ)类比函数的“极差”的概念, 请求出在上的“极差”.
2013学年浙江省第一次五校联考
数学(理科)参考答案
一、选择题: 本大题共10小题, 每小题5分,共50分。在每小题给出的四个选项中, 只有一项是符合题目要求的。


喜欢此文的还喜欢。。



本文标签:浙江省五校,数学试题
相关阅读
高考网FOOT

Copyright © 2006 - 2011 www.gaokw.com Inc. All Rights Reserved 一品高考网版权所有 粤ICP备10093574号